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HEAT TRANSFER IN TURBULENT FLOW OF POLYATOMIC 

GASES ALONG A TUBE 

O. A. Nekhamkina and M. A. Rotinyan UDC 536.244:532.542.7 

Anumericalmethod is used to calculate the transfer to ammonia for different models 
of turbulent viscosity. The results obtained are compared with experimental data. 

With the increase in heat-flux levels in various power stations and the growing variety 
of heat carriers (polyatomic and chemically reacting gases, material in a near-critical and 
supercritical state, etc.), there has arisen a need for methods of calculation of the tur- 
bulent flow along a tube of liquids with strongly variable physical properties. 

Both physical and mathematical difficulties beset the solution of this problem. Because 
there is no consistent theory of turbulence at present, it remains uncertain whether semiem- 
pirical models of turbulence developed for flows of incompressible liquid along a tube may 
be used for liquids with variable properties. From a mathematical viewpoint, the existing 
temperature and pressure dependences of the physical properties of the liquid lead to "strong" 
nonlinearity of the initial system of equations, so that it is necessary to use finite-dif- 
ference methods for its solution. 

Such methods have been used to obtain solutions for turbulent flows of gaseous nitrogen 
and air [i] and hydrogen in a state of equilibrium dissociation [2] along a circular tube. 

In [i], a comparative analysis of Ii different models of turbulent viscosity was made on 
the basis of experimental data. It was shown that in the conditions under consideration the 
formula of [4] gives the best agreement with experiment [3]. 

In [2] turbulent viscosity was determined using the Reichardt formula [5] with Goldman's 
correction [6]. 

In both cases it was assumed that the turbulent analog of the Prandtl number is unity, 
that the gas is perfect, and that the pressure dependence of the thermodynamic properties 
and molecular transfer coefficients is negligible. Note that the last two assumptions con- 
siderably restrict the use of these methods, and the conclusions drawn as to their applica- 
Bility require further verification. 

The present paper outlines a finite-difference method that may be used to calculate tur- 
bulent flows in circular tubes for arbitrary temperature and pressure dependences of the 
thermodynamic and transfer properties of the gas. 

The results obtained for the heat transfer to ammonia using the formulas of [4, 5] and 
two variants of the Millionshchikov formula [7, 6] to determine the turbulent viscosity are 
compared with experimental data [8]. The Millionshchikov formula is of great practical 
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TABLE i, Coefficients in Eq. (8) 

q~ 

i I  

ff 

a ~  

Fef 

H ,% 
Pr Pr T 

b ~  

r 

a �9 

C 

Pr '- Prw ~r O r \  -, 

interest, since it can easily be generalized to the case of flow in channels with roughened 

walls [7], 

The system of equations describing the turbulent flow of liquid in a circular tube is 

of the form 
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The longitudinal velocity component and the enthalpy are referred to their mean-mass 

values in the initial cross section of the tube: 
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The boundary conditions for Eqs. (1)-(4) are 
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In what follows the bar above the dimensionless quantities is omitted. 

The approach proposed in [9, I0] is adopted for the development of a method of solution 
of Eqs. (1)-(4) with the boundary conditions in Eqs. (5)-(7). After introducing the current 

F 

function P(r) =f'purdr, Eqs. (i) and (3) may be written in the single form 
0 

Ox ~ Or ~ x  Or- \ Or . ,ix 

Table i gives the form of the coefficients ~ b~, and c~ for the equations of motion 
and energy. 

A finite-difference approximation of Eq. (8) for points within the regionmay beobtained 
using the six-point scheme shown in Fig. la. 

First, Eq. (8) is integrated over the area shown shaded in Fig. la. After taking the 
integral with first-order accuracy in x and second-order accuracy in r, simple transforma- 
tions give the result 
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The coefficients A<#, B~, and C~0 for the equations of motion and energy may be represent- 
ed by the single equation 
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TABLE 2. Models of Turbulent Viscosity 
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is equivalent to the orientation of the radial derivative in 

The finite-diffence representation of the flow- 

N 
~ p:uiS i = I. (13) 
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To close the system of difference equations, the boundary conditions in Eqs. (6) and 
(7) must be imposed on Eqs. (9) and (13). 

If Eq. (8) is integrated over the areas shown shaded in Fig. ib, c, using the boundary 
condition in Eq. (6) and the last condition in Eq. (7), respectively, with the same accuracy 
as for the internal points of the region, the result obtained is 

q~i = (A~)I q~ --  (C~)1 + (D.)1 4-, (E~)~ p~, ( 1 4 )  
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The coefficients in Eqs. (14) and (15) may be calculated from Eqs. (10)-(12) after dis- 
carding terms containing the subscripts i -- 1 and i -- 1/2 or i + 1 and i + 1/2 and replacing 
the subscript i by 1 or N + i, respectively. The coefficients kJ-** , kN+, ,j-! and (DH)N+, form 
an exception; in this case, the appropriate expressions are 
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Fig. 2. Dimensionless profile of turbulent 
viscosity for conditions No. 6 with x/d = 80 
(curves 1-4 correspond to the models in Table 2). 

Specifying the boundary conditions of the first kind in Eq. (7) at the wall, they may 
be replaced directly by their difference analogs 

UN§ = 0, Hv- ' - i  = Ht~. ( 1 6 )  

In fact, Eqs. (9) and (13) together with Eqs. (14), (16) or (15) form a nonlinear al- 
gebraic system in terms of the enthalpy, velocity, and pressure at the j-th layer, which is 
solved by successive approximation. 

The calculation begins with the solution of the energy equation by the trial-and-error 
method. The coefficients of Eqs. (9), (14) (15), or (16) are calculated from the values 
of the unknown functions obtained in the preceding iteration. The parameters from the pre- 
ceding step in x are used as the initial approximation. The velocity profile, the current 
function, and the pressure are then calculated, using Eqs. (9), (13), (14), and (16), pre- 
liminarily converted to the form 

N 

l - -  " ~  o~SiG i ~_~, 

i=, (17) u i = O i - - F i P '  P = - - N  . . . .  

"~ piSiF i 
i=1 

The coefficients G i and F i in Eq. (17) are determined using the following recurrence re- 
lations : 

G i := K~Oi+, + Lz, F t = KiFi.+l -k Mt, i = 1, 2, . . . .  N - -  1, 

G , v = L v ,  GN-'- = 0 ,  FN = M N ,  F.~,+, = 0 ,  
where 

Ki = (A,,) i /[1 - -  (Bu)i Ki- l l ,  L~ = [(B,,) i Li-I  .... (Cu)i + (D, , )d / [1  - (Bu)~ Ki- t] ,  

M i =  [(Bu)i M i - , - ' , - ( E , , ) i ] / [ 1 - - ( B , , ) ~ K i - l l ,  i =  2, 3 . . . . .  N, 

K,.= (A,,),, L~ ::  (co~ + (O,,),, M, (E,,),. 

As in the case of the energy equation, the coefficients Au, Bu, Cu, Du, and E u are de- 
termined from the values of the unknown functions in the preceding iteration. 

From the known values of the total enthalpy and the velocity, the enthalpy and tempera- 
ture profiles are calculated. Further, the results obtained for the pressure and temperature 
are used to determine th~ thermodynamic properties and molecular transfer coefficients. The 
effective viscosity and heat conduction are calculated in accordance with the model of tur- 
bulent viscosity adopted. This procedure is repeated until convergence is obtained. 

This method is used to calculate the turbulent flow of ammonia for four models of tur- 
bulent viscosity (Table 2). Tabulated values are taken for the properties of ammonia [ii]. 

The grid employed has a constant increment in x (Ax = 0.5) and nonuniform divisions 
along the r axis (the total number of points in the transverse direction is 50). The values 
of ox and oa chosen were: ox = i; a2 = 0.5. 

In the initial tube cross section (at x = 0) a homogeneous enthalpy profile and a com- 
pletely developed velocity profile are specified for the isothermal turbulent flow in the 
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Fig. 3. Distribution of heat flux qw, W/m2, over the 
length of the tube: The points give experimental re- 
sults [8]; curves 1-4 are as in Fig= 2; a) conditions 
No. 6; b) No. 26. 

Fig. 4. Dimensionless velocity and temperature profile 
for conditions No. 6 with xld = 80; notation as in Fig. 2. 

tube; this corresponds to the experimental conditions. The experimental distribution T ~ 
Tw(x) is taken as the boundary condition at the wall for the energy equation. Because there 
are no experimental data for x/d < 3, an arbitrary boundary condition for this region is 
taken in the calculations. Thus, the comparison of the calculated results with the experimen- 
tal data should begin a certain distance from the inlet. Preliminary calculations [with dif= 
ferent expressions for Tw(x ) on the section x/d < 3] show that this distance does not exceed 
six diameters. No more than four iterations are required to obtain agreement with accuracy 
up to 0.2% between successive approximations~ The integral thermal-balance condition over 
the increment Ax is then satisfied with accuracy • 

Results obtained for two characteristic flow conditions for ammonia -- Noo 6 (Reo = i.2~ 
l0 s , Tw/T l = 1.4) and No. 26 (Reo = 1.3,10~ Tw/T l = 1.9) [8] -- are shown in Figs. 2-4. 

As follows from Fig. 2, in the region at the wall all the values of the viscosity, ex- 
cept those corresponding to model No~ 4, are close. The turbulent viscosity profiles cal- 
culated by tile Van Dreist and Mil!ionshchikov formulas reach a maximum in the central flow 
region and vanish at the tube axis. The viscosity profile calculated by the Reichardt for- 
mula is qualitatively different and retains a practically constant value in the flow core 
right up to the tube axis. 

The velocity and temperature distributions over the tube cross section (Fig. 4) depend 
sigmificantly on the model of the turbulent viscosity adopted~ However, for the first three 
models, the difference in the values of the heat flux at the wall qw(x) shown in Fig~ 3 is 
small and there is good agreement with the experimental data (shown by points in Fig. 3)~ 

The results obtained indicate that the local characteristics of the flow are very sen- 
sitive to the distribution of turbulent viscosity over the whole flow region. The effective 
viscosity in the region at the wall has the main effect on the integral flow characteristics. 

The Van Dreist model, the Reichardt model with Goldman~s correction, and the Million- 
shchikov model give satisfactory results for the heat transfer to polyatomic gases with sig- 
nificant temperature and pressure dependences of the thermophysical and transfer properties. 

NOTATION 

x, r, coordinates; r w and d~ radius and diameter of tube; v~ transverse velocity com- 
ponent; p, density; p, dynamic viscosity; X, heat conduction; Cp, specific heat at constant 
pressure; T~, mean-calorimetric temperature of liquid; Tw, temperature of tube wall; 0 = 
(T-- Tw)/(T ~ -- Tw) ; mw, friction at wall; qw, heat flux at wall; i, point number along the r 
axis; j, layer number over x; N, number of intervals along the r axis; ~, kinematic viscosity. 
Indices: ef, effective value; T~ turbulent component; 0, value at inlet cross section of 
channel; w, value at channel wall. 
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STEADY THREE-DIMENSIONAL TEMPERATURE FIELD IN COOLED 

TURBINE BLADES 

V. I. Lokai and E. I. Gunchenko UDC 621.438-253.5.001.2:536.245 

A method based on the use of Green functions is proposed for calculating the tem- 
perature field of cooled turbine blades. The method presumes the use of high-speed 
computers with large memories. 

The creation of stoichiometric gas turbine engines and installations requires the solu- 
tion of complex Scientific--technical problems. One of them is the reliable detailed cal- 
culation of the three-dimensional fields of temperatures and stresses in cooled turbine 
blades. 

With an increase in the gas temperatures and intensification of the cooling the tempera- 
ture gradients increase both over the height of the blades (especially in the basal zone) and 
through the cross section (especially in the zone of the edges and perforations). Under these 
conditions solutions based on the separation of the three-dimensional problem into one-dimen- 
sional and two-dimensional problems [i, 2] can lead to considerable errors. 

An approximate solution of the three-dimensional problem of steady heat conduction in 
application to turbine blades with open cooling, reduced to the stage of practical use in 
contrast to [3], is presented in the present report. Such a problem comes down to integra- 
tion in a simply connected region (the body of the blade) surrounded by a continuous medium 

* (from (the gas and the coolant) with locally varying parameters: the temperature Tsur.me d 
T~ to T~ool) and the heat-transfer coefficients ~ (from ~g on the gas side to acool on the 
coolant si~e). 

The solution described below is also valid for blades with a closed cooling system (a 
multiply connected region). The method presumes the use of a computer. 

In the first approximation we solve the three-dimensional problem of heat conduction 
with %(T) = const, i.e., the system 

02T OaT + OaT + -- 0, (I) 
Ox2 dy ~ 0z z 

~ (T~ur.med -- T~) dF = ~ - ~  [~s=o dF. (2) 
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